MISSOURI

3D CFD Simulation of Airflow Re-Distribution and Associated Pressure Drops Inside the Overcast in Underground Coal Mines

By

Jerry C. Tien & Magesh Thiruvengadam

Mining & Nuclear Engineering Department Missouri University of Science & Technology

Outline

- Introduction
- Overcast Configurations
- Computational domain and Mesh Generation
- Governing Equations and Boundary Conditions
- Validation
- Simulation Results
 - Effects of different overcast configurations
 - Effects of airflow rates
 - Overcast in Series
- Conclusion

Introduction

- Overcasts are air bridges to permit one airway to pass over another without mixing
- They are more commonly used in coal mines

Overcasts in a typical intersection in an underground coal mine

Introduction

- Measurements of pressure and shock losses are reported by Tien (1988) for seven different overcast configuration
- However no numerical study has been made to predict pressure and shock losses around the underground overcast
- The objective of the study is to determine total pressure loss and shock losses around overcast using CFD study
- The pressure and shock losses are determined for
 - different overcast configuration at a given airflow rate
 - different airflow rates for a given overcast configuration
 - different spacing between two overcast in series for a given overcast configuration and air flow rate

Overcast Configurations

 Seven different configuration used by Tien (1988) will be used for the present study with entry height (*h*) = 6 ft and entry width (*w*) = 20 ft

Overcast Configurations

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Computational Domain & Mesh Generation

Governing Equations and Boundary Conditions

Governing Equations and Assumptions

- Numerical simulation is carried out using ANSYS FLUENT 12.0
- Three-dimensional, steady, turbulent, incompressible Navier stokes, continuity, and k-ε equations are solved
- Flow is assumed to be Isothermal
- Walls are assumed to be smooth

Boundary conditions

- Inlet: Velocity Boundary conditions (Air Flow rate = 47,000 cfm)
- Exit: Fully developed flow conditions
- Walls: No-slip.

Validation

- CFD method is validated by simulating the experimental geometry and flow conditions of Tien (1988)
- The experimental geometry is a 10:1 wooden scale model
- The predicted total pressure loss is compared with the measured results for the overcast with 90° roof w and w/o ramp

Overcast Configuration	Air Quantity (cfm)	Predicted ∆p (inches-water)	Experimental ∆p (inches-water)	% Error
90° roof w/o ramp	939.5	0.2002	0.32071	37.6
90° roof w/ ramp	1295.5	0.3254	0.45719	28.8

Simulation Results

Re = 385,000

Streamlines demonstrating general flow features (47,000 cfm)

- Air flow rate is fixed at 47,000 cfm
- Cross-sectional planes are created for each overcast structure
- Variation of area weighted average of total pressure and velocity pressure for each cross-sectional plane is evaluated and plotted

Schematic of the cross-sectional planes inside the airway

Total and Velocity pressure distributions for different overcast geometries

Total and Velocity pressure distributions for different overcast geometries

Overcast Configuration		X	<i>x_R</i> (m)	ΔP (Pa)	Power (W)
90° roof	w/o ramp	4.324	5.0615	10.595	236.23
	w/ ramp	3.402	6.0694	8.335	185.84
	w/o ramp (half height)	7.188	5.8904	17.610	392.65
	w/ ramp (half height)	4.544	7.3795	11.134	248.24
	w/o ramp (half clearance)	12.26	6.084	30.040	669.80
	w/ ramp (half clearance)	18.49	9.2787	45.294	1009.91
60° roof	w/o ramp	3.026	4.6185	7.415	165.32
	w/ ramp	2.403	4.6655	5.888	131.28
	w/o ramp	1.988	3.2304	4.871	108.60
45° roof	w/ ramp	1.256	2.8805	3.077	68.60
45 1001	w/o ramp (0.71h)	3.011	4.7947	7.377	164.48
	w/ ramp (0.71h)	1.952	4.5175	4.782	106.63
30° roof	w/o ramp	0.966	1.1666	2.367	52.77
	w/ ramp	0.349	0	0.856	19.09

Effect of airflow rates

- Overcast with 90°roof w/o ramp is chosen for this study
- Four different air flow rates are considered

Effect of airflow rates

Air velocity (m/s)	Air Flow Rates (CFM)	x	ΔP (Pa)	Reattachment length (x _R in m)
1	23,600	4.338	2.657	5.1604
2	47,200	4.324	10.595	5.0615
3	70,800	4.322	23.827	4.9374
4	94,500	4.322	42.359	4.8475

Shock loss factor and reattachment length at different airflow rates (90° roof w/o ramp)

Overcast in Series

- Two overcast in series is considered for this study
- Overcast has 90°roof w/o ramp
- Air flow rate is fixed at 47,000 cfm
- Spacing between the overcast is also changed to study its effect on shock loss

Overcast in Series

Total and Velocity pressure distributions for different overcasts spacing

Overcast in Series

Distance, d (ft)	ΔP (Pa)	x
20	20.628	8.42
30	21.060	8.60
40	21.319	8.70
50	21.451	8.76
60	21.503	8.78

Distance, d (ft)	ΔP (Pa)	X
20	10.595	4.324

Shock loss for Single Overcast

Shock loss factor for different spacing between two overcast

Conclusions

- The total pressure drop decreases with the decrease in the roof angle.
- The total pressure drop also decreases with the addition of a ramp for all overcast configurations with the exception of overcast with half clearance before the overcast.
- For a given airflow rate, the maximum pressure drop occurs for the case with half clearance before the overcast and with a ramp.
- The length of the airway required for the flow to refill the entry height downstream from the overcast decreases with the decrease in the roof angle.

Conclusions

- The shock loss factor is a function of geometry and does not depend on the airflow rates when the flow is fully turbulent.
- When airway has two overcasts operating in series, the total pressure drop is twice than that for airway with single overcast.
- Also for overcasts operating in series the distance between them has negligible effect on the overall pressure losses across the overcasts

QUESTIONS?

